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Reuseware is a software composition framework founded on the concepts of Invasive Software Composition (ISC) for developing new software modularization techniques and integrating them into software languages.


Installation


	Download Eclipse and install the following:
    	Eclipse Plug-in Development Environment (PDE)
	Eclipse Modeling Framework (EMF)
	Graphical Modeling Framework (GMF)
	EMFText - emftext.org


  
	Download Reuseware 1.0.1 (final release) and extract all plugins into Eclipse’s plugin folder.



Examples


https://github.com/DevBoost/Reuseware/tree/master/Applications


Overview


The user interface of Reuseware is integrated into the Eclipse platform
and works together with modeling editors available in your Eclipse
installation. Reuseware provides the following three major features:
Fragment Stores, the Fragment Repository View and the Composition
Program Editor.


Fragment Stores


Fragment stores are folders in you workspace that contain fragments. You
can mark any folder in any kind of project as a fragment store, by
selecting the folder, and pressing the Activate Fragment Store Button
in the tool bar


Fragments that are registered in a store are available for reuse in
composition programs. Each fragment has a Unique Fragment Identifier
(UFI). This is defined by a base UFI and the position of the fragment
in the store. You can define the base UFI when activating a store.


Fragment stores can also contain composition system definitions (*.rex
files) that define how the composition interfaces of fragments are
derived. How those are defined is not covered in this guide. Look at the
Example Applications
for ready made composition systems (rex files) you can use.


Fragment Repository View


The fragment repository view lets you inspect which fragments are
available in your system. Open the vie in Eclipse through Window >
Show Views > Other… > Reuseware > Fragment Repository.


From the view you can:
1) directly open a fragment by double-clicking it
2) select fragments you want to reuse in a composition program by
pressing th + button.


Composition Program Editor


To create a new composition program select New > Others… >
Reuseware > Composition Program. The composition program will open in
a graphical editor. A composition program consists of the following
concepts.


Note 1: you can open fragments directly from a composition program by
double-click.


Note 2: yellow and red elements in a composition program indicate
warnings and errors. Double-click such an element to get a more detailed
message.


Fragment References


Create a reference to a fragment you like to reuse by selecting it in
the Fragment Repository View and pressing the + button when the
editor is opened. The fragment reference is displayed as a box with
circles attached. The circles (called Ports) represent the fragment’s
composition interface.


At least one of the fragment references has to be set as target. This
means that the composition will extend this fragment with others. In the
properties of a target fragment, one can define the UFI of the result
(targetUFI). A fragment can be set as target in the properties or by
right-clicking and selecting Set as Target. Target fragments are
displayed in gray


Composition Links


Use composition links to connect Ports (the circles at the fragment
references) to describe compositions. Only ports of matching type can be
linked. If the composition link turns red, the linking is not possible;
if it turns black, everything is fine. Some links turn into arrows
describing a direction of composition. This gain depends on the type of
ports you are linking. The direction indicates that one fragment is
extended with another. The details about his are out of scope of this
guide. Stick to the following rules-of-thumb:


	A fragment that was marked as target (gray) should only have
incoming links.
	If you define multiple composition links between two fragments, all
directed links should point into the same direction.



Composition Steps


Every composition links needs to participate (through an Participation)
on a composition step. Only links that belong to a step are executed in
the composition. Through steps, the composition can be fine tuned. For
the start, group all links that define a composition between two
fragments into one step.
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