
Letting EMF Tools Talk to Fujaba through Adapters

Jendrik Johannes
Technische Universität Dresden

Software Technology Group
01062 Dresden, Germany

jendrik.johannes@tu-dresden.de

ABSTRACT
Many software modelling tools are built on top of the Eclipse
Modeling Framework (EMF) through which they can com-
municate and exchange models. In contrast to that, the Fu-
jaba Toolsuite defines its own modelling framework. Both
frameworks are built on the same concepts of software mod-
elling. Therefore, they can be adapted. This paper presents
an implementation of a generic adapter layer that adapts Fu-
jaba’s modelling framework to EMF. Through this adapter
layer, Fujaba models can be processed by any EMF-based
tool without adapting each of those tools individually.

1. INTRODUCTION
The Fujaba Toolsuite and the Eclipse Modeling Framework
(EMF) are both extensible software modelling frameworks.
Fujaba, as an academic tool, has a long history and grew
since the beginning of UML modelling into a set of tools
based on a common core framework. EMF, as an industrial
driven open-source framework, has attracted a larger com-
munity and consequently many modelling tools were built
based on it during the last years. Today, Fujaba and EMF
are both stable and productively usable modelling technolo-
gies, where each has its advantages and disadvantages for
specific software modelling tasks.
In Model-Driven Software Development (MDSD), which at-
tempts to use modelling during the whole software devel-
opment process, tool integration is very important. Focus-
ing on Fujaba and EMF-based tools, both could be used
together and profit from each other in MDSD processes.
Therefore, solutions are needed to integrate them tightly.
In earlier works, several ideas were presented that deal with
integration and exchange between Fujaba and EMF. They
were either based on aligning Fujaba-code itself [8] or on
model-transformations that convert Fujaba to and from EMF
models [5, 7]. The earlier require invasive changes of the
Fujaba source-code, which is problematical when the tool
evolves; the latter have a static nature, which requires ex-
plicit translations that hinder a smooth runtime integration
of both tools and easily lead to data inconsistencies. The
approaches so far also did either not succeed or not attempt
to provide a generic integration of both frameworks.
In this paper we apply the well-known Adapter Pattern [4]
to implement a small set of adapters that mediate between
Fujaba and EMF tools at runtime. Therefore, no changes
neither of Fujaba nor of EMF are required, but models are
kept synchronised at runtime. The only premise for such
adapters is that both tools expose the runtime model in-
stances to the outside—which both do.

The paper is structured as follows: Section 2 shows the
points at which Fujaba and EMF need to be adapted and de-
scribes our adapter implementation. The usability of the im-
plementation is demonstrated using different examples that
show how Fujaba interacts with different EMF-based tools
in Section 3. Section 4 concludes and discusses possible en-
hancements of the adapter layer.

2. MAPPING AND ADAPTATION
In this paper, we focus on inspecting and modifying Fu-
jaba models with EMF tools, which can only handle EMF
models. To let Fujaba models look like EMF models, the
following four concepts, found in both Fujaba’s and EMF’s
implementation of model, need to be adapted: A model in
Fujaba or EMF (1) conforms to a metamodel, (2) consists
of model elements and (3) references between the elements,
(4) is instantiated by a factory, and (5) persisted in a re-
source (e.g., a file). This section shows how the different
implementations of the five concepts can be adapted.

2.1 Metamodel Mapping
A metamodel defines the concepts of a modelling language
and can therefore be used to instantiate a modelling frame-
work for that language. Since we want to access Fujaba mod-
els from EMF, the first step is to make Fujaba’s modelling
language—UML Class Diagrams, Statecharts, and Activity
Diagrams with Story Patterns—known to EMF. This can be
done by providing a metamodel of these languages in Ecore1

format. The second step is to map the metaclasses of this
metamodel (i.e., Fujaba metamodel in Ecore format) to the
corresponding representations of the metaclasses in Fujaba
(i.e., Java classes implementing the metaclasses).
To solve this issue, we implemented a tool that extracts
information about the Fujaba metamodel from the Fujaba
class files using Java’s refelection facilities. For each Java
class that belongs to Fujaba’s metamodel implementation,
the tool constructs an EClass (EMF metaclass representa-
tion) and organises all of them in EPackages (EMF meta-
model representations), which are then registered in EMF’s
metamodel registry. For this, the tool makes assumptions
about Fujaba’s metamodel implementation but also requires
additional information that can not be derived from the im-
plementation allone. Describing all the assumptions and
additional parameters in detail is not possible in this paper
due to space limitations. Some assumptions are, however,
presented in the context of Sections 2.2 and 2.3.

1EMOF [9] conformant metamodelling language of EMF



During the extraction, a mapping between the Fujaba meta-
class representation (Java class objects) and Ecore metaclass
representations (EClass objects) is created. The mapping is
used by the adapters described in the next sections.

2.2 Model Element Adapter
The most important objects to adapt are the ones repre-
senting model elements. In both Fujaba and EMF, each
model element is represented by one Java object. In Fu-
jaba, all those objects are instances of a class implementing
FElement. In EMF, the objects are instances of a class im-
plementing EObject. Both interfaces offer convenient func-
tionality for each model element; for instance comparability
or listener support. In Fujaba, the Java class of which a
model element is an instance corresponds to that element’s
metaclass. In EMF, this does not have to be the case.2 The
metaclass of an element can always be determined by the
eClass() method of EObject. A standard implementation
of EObject that can be used to represent any model element
is DynamicEObjectImpl.
This loose coupling between metaclasses and their Java im-
plementation is possible in EMF because the EObject inter-
face offers rich reflection capabilities to inspect and modify
models. For example, eGet(String feature) delivers the
value of a feature by naming it; eSet(String feature, Ob-

ject value) sets a feature to the given value. In Fujaba,
such reflection capabilities are not provided by the FElement
interface. Models can only be inspected and modified by us-
ing Java methods that correspond to element features (e.g.,
get<featureName>()).
Our adapter implementation delegates the reflective meth-
ods of EObject to methods of Fujaba metamodel classes
using Java reflection. It hereby makes assumptions about
the method names in Fujaba metamodel classes which were
already used in the metamodel mapping (Section 2.1) and
correspond to method naming applied by the Fujaba code
generator.
The dynamic model element adapter, DynamicEObject4Fu-
jabaModels, is implemented as an extension of the existing
DynamicEObjectImpl. The DynamicEObject4FujabaModels

constructor expects an instance of FElement. This is the
adapted Fujaba object to which the constructed adapter
is bound for its lifetime. Furthermore, the methods dy-

namicGet() and dynamicSet() are overridden that handle
reading and writing properties of the object. They realize
the connection between the public EObject interface and the
storage of information.

dynamicGet(int featureID) is implemented as follows:

1. Use the featureID (an identifier for a EStructural-

Feature object that represents a feature defined by an
EClass) to obtain name, mutiplicity, and type of the
feature

2. If the feature’s multiplicity is 1: find and call the
method get<featureName>() on the adapted fujaba
element (call the method is<featureName>() instead,
if the type is boolean)

(a) If the called method returns a String, Integer, or
Boolean value, return that value

2It can be the case if EMF’s code generation is applied

(b) If the called method returns an FElement, ask the
DynamicEObject4FujabaModelsFactory (cf. Sec-
tion 2.4) for the corresponding Adapter and re-
turn it

3. If the feature’s multiplicity is > 1: if no DynamicEList-

4FujabaModels representing the multiplicity feature
was constructed yet, construct one (cf. Section 2.3);
return the DynamicEList4FujabaModels representing
the multiplicity feature

dynamicSet(int featureID, Object value) is implemented
as follows:

1. Use the featureID to obtain name, mutiplicity, and
type of the feature

2. If the feature’s multiplicity is 1:

(a) If the type is an EClass, ask the metamodel map-
ping (cf. Section 2.1) for the corresponding Fu-
jaba metamodel class and use that as type (oth-
erwise the type is String, Integer, or Boolean and
can be used as is)

(b) Find and call set<featureName>(<featueType>)
on the adapted fujaba element

3. If the feature’s multiplicity is > 1: do nothing (handled
by DynamicEList4FujabaModels, cf. Section 2.3)

2.3 Collection Reference Adapter
Features with a multiplicity > 1 have to be handled explic-
itly in modelling tools implemented in Java, since there is no
notion of attributes with a multiplicity > 1 in Java directly.
Instead, collection objects have to be used. Fujaba and EMF
handle this differently: Fujaba offers three3 methods for
each multiplicity > 1 feature directly on the corresponding
metaclass. These methods are iteratorOf<featureName>()
(returns an iterator over the feature), addTo<featureName>
(value:<featureType>) (adds an element to the feature),
and removeFrom<featureName>(value:<featureType>) (re-
moves an element from the feature). In EMF, no such meth-
ods are defined by metaclasses. Instead, a list object is
returned when the value of a specific feature is requested.
Clients can add/remove elements to/from the list which di-
rectly manipulates the feature. Therefore, EMF comes with
its own extension of the Java Collections Framework to in-
sert additional functionality into the list methods which are
required for model manipulation. In particular, lists repre-
senting features have to implement the interfaces EList.
For our adaptation, we require an EList that delegates all
operations to methods of the adapted Fujaba object. In
the implementation DynamicEList4FujabaModels,it was not
possible to reuse an existing implementation (as for the
model element adapter), since the functionality of storing
data is so fundamental to Java’s list implementations that
nearly every methods accesses the data storage directly. Con-
sequently, we implemented the required interfaces directly
and did the following delegations to the adapted Fujaba el-
ement:

3There are more methods to access features, but the enu-
merated three are sufficient. Availability of other methods
also varies between metaclasses.



1. iterator() delegates to iteratorOf<featureName>()

2. add()delegates to addTo<featureName>()

3. remove() delegates to removeFrom<featureName>()

The adapted Fujaba element—and the feature that is adapted
by a DynamicEList4FujabaModels—are both passed to that
list in its constructor, when it is created by a dynamicGet()

method call of a DynamicEObject4FujabaModels (cf. Sec-
tion 2.2). All other list operations dictated by the imple-
mented interfaces are based on the three that delegate to
the Fujaba element.

2.4 Model Element Factory Adapter
The two presented adapters are used to access and ma-
nipulate existing model elements. What is not supported
yet is the creation of new elements, which is implemented
in the DynamicEObject4FujabaModelsFactory. Both Fu-
jaba and EMF use factories for model element creation and
have a registry for factories that can be queried for a suit-
able factory for a given metaclass. Therefore, adaptation
is straight forward: DynamicEObject4FujabaModelsFactory
extends EMF’s standard factory implementation EFacto-

ryImpl by overriding the basicCreate(EClass) template
method. Our implementation uses the metamodel mapping
(cf. Section 2.1) to obtain the Fujaba metaclass correspond-
ing to the given EClass. It then asks Fujaba for a factory
suitable for that metaclass and uses that factory to create a
new Fujaba model element.
A singleton DynamicEObject4FujabaModelsFactory is regis-
tered at the metamodel created by the mapping (cf. Section
2.1). Doing so forces EMF to use this factory for creating
elements conforming to the corresponding metamodel.
The DynamicEObject4FujabaModelsFactory also acts as a
model element adapter (cf. Section 2.2) registry. It is used
by all four adapter types (cf. Sections 2.2, 2.3, 2.4, 2.5)
to obtain an adapter for a Fujaba model element. If the
adapter does not exist yet, it is created for the correspond-
ing element and registered.

2.5 Resource Adapter
The last missing piece in the adaptation is the storing and
loading of models. Fujaba models are loaded and stored by
Fujaba and made available in Fujaba’s workspace. In EMF,
so called Resources are used to represent physical storage.
We leave the loading and storing of models to Fujaba and
adapt it as well, by providing a FujabaResource that, in-
stead of loading from and writing to a physical storage, ac-
cesses the Fujaba workspace.
Resource types can be registered at EMF for a file exten-
sion. We register the FujabaResource for the extension
.fujaba. When a file with the .fujaba extension is opened
in the Eclipse workspace, EMF attempts to load it as a
FujabaResource, which takes the file name of the opened
file and looks for a Fujaba project (in Fujaba’s workspace)
with the same name. It then retrieves the adapter for that
project (which is also a Fujaba model element) from the reg-
istry (cf. Section 2.4) and sets it as the resource’s content.
Therefore, any Fujaba project can now be accessed as EMF
model from Eclipse by creating an empty file somewhere in

the Eclipse workspace using the scheme: <FujabaProject-

Name>.fujaba.4 Saving works in a similar fashion by manip-
ulating the Fujaba workspace in FujabaResource’s saving
method.

3. APPLICATIONS
This section shows how the adapter is used by different
EMF-based tools without further effort. Its aim is to demon-
strate the rich possibilities of a generic integration of Fujaba
and EMF as demonstrated in the last section. Throughout
this section we use s simple UML model modelled in Fujaba
shown in Figure 1.

Figure 1: Model of a conference system in Fujaba

3.1 Displaying Fujaba Models in EMF-style
The first simple application is a tree model editor included in
EMF. This editor can display any model independent of its
metamodel. It uses the containment relationships between
model elements to determine the tree structure. Figure 2
shows the example opened in that editor. Note that we can
not only inspect, but also modify the model with the editor.

Figure 2: Fujaba model displayed in EMF’s editor

3.2 EMF Compare: Diffing Fujaba Models
EMF Compare [3] is a tool that computes diffs between two
versions of a model and visualises them using tree represen-
tations as used by the editor above. Imagine that we import
a new version of the example into the Fujaba workspace un-
der the name ConferenceSystemNew, where the class Paper
has been renamed to Submission. EMFCompare suggests
that Submission was indeed Paper before by inspecting both
versions’ structures as shown in Figure 3.

Figure 3: Visual diff between Fujaba models

4Fujaba has to run in the same JavaVM as Eclipse such that
the Fujaba workspace can be accessed.



3.3 Transforming Fujaba Models with ATL
For EMF, there are plenty of model transformation and
management tools available; many of them in the Eclipse
Modelling Project [11]. As one representative, we show the
ATL [1] transformation tool, in which model transformations
can be defined in declarative rules. One could for instance
define a transformation from Fujaba UML to Eclipse UML2
[2] and then open the result with editors for the latter. Fig-
ure 4 shows an excerpt of such a transformation and the
result of transforming the conference system model.

Figure 4: Transforming Fujaba to Eclipse UML

3.4 Reuseware: Composing Fujaba Models
In our own tool Reuseware [6, 10] we can define (cross-
cutting) composition systems for modelling languages. We
defined, for instance, a composition system for Fujaba class
diagrams that can be used to extend classes with pre-defined
functionality. Figure 5b shows a Reuseware composition
program that extends the example model with observer be-
haviour by reusing the prior defined observer model (cf. Fig-
ure 5a). Reuseware can execute the composition program
and produce a composed model (cf. Figure 5c). This appli-
cation was indeed our motivation for developing the adap-
tation mechanism and will be further explored in future re-
search.

Figure 5: Composing two Fujaba models

4. CONCLUSION AND OUTLOOK
In this paper we described a metamodel mapping and a set
of adapters that enable EMF tools to access models in the
Fujaba workspace. This opens the door for interesting new
projects that combine EMF tools and Fujaba.
A prerequisite for the adaptation is the availability of an
Ecore version of the Fujaba metamodel. Since this was not
available, a tool was written to extract this metamodel from
Fujaba’s class files. This tool requires additional informa-
tion, which are at the moment statically encoded. In the
future, this could be made configurable, and different con-
figurations could be provided for different Fujaba versions
to ensure that the tool works with them. Another approach

would be to construct a complete Fujaba metamodel in UML
by using Fujaba reverse engineering tools and, if required,
manual modelling. [5] can then be applied to transform it
into an Ecore metamodel of Fujaba.
We realised dynamic adapters using reflection. One could
also think of a generative approach that generates specific
adapters for metaclasses, avoiding the usage of reflection
to increase performance. Such an approach might also be
applicable the other way around—to access EMF models
from Fujaba. For this, Ecore metamodels would have to be
mapped to extensions of Fujaba’s metamodel and adapters
that work in the reverse direction must be generated.
For the adapters to work, both the EMF tool and Fujaba
have to run in the same JavaVM, which caused some Class-
Loader issues during our experimentation. How to resolve
those has to be further investigated. Another open issue is
to integrate the adapters with Fujaba4Eclipse, which should
not be difficult, since Fujaba4Eclipse is based on the same
framework as Fujaba. On the other hand, the integration
should be much smoother and less problems should occur,
since Fujaba4Eclipse and the EMF-based tools both run in-
side Eclipse (and therefore in the same JavaVM).

5. ACKNOWLEDGMENTS
This research has been co-funded by the European Com-
mission within the 6th Framework Programme project Mod-
elplex contract number 034081 (cf. www.modelplex.org).

6. REFERENCES
[1] ATL Project. Atlas Transformation Language.

www.eclipse.org/m2m/atl. Accessed Aug. 2008.
[2] Eclipse Foundation. Eclipse UML2 Project.

www.eclipse.org/uml2. Accessed Aug. 2008.
[3] EMF Compare Project. Emf compare. www.eclipse.org/

emft/projects/compare. Accessed Aug. 2008.
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1994.

[5] L. Geige, T. Buchmann, and A. Dotor. Emf code
generation with fujaba. In L. Geiger, H. Giese, and
A. Zündorf, editors, Proc. of the 5th International Fujaba
Days, Kassel, Germany. University of Kassel, Oct. 2007.

[6] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler.
On language-independent model modularisation.
Transactions on Aspect-Oriented Development, Special
Issue on Aspects and MDE (to appear), Nov. 2008.

[7] F. Heidenreich and U. Wemmie. Breaking the domination
of the internal graph model. In L. Geiger, H. Giese, and
A. Zündorf, editors, Proc. of the 5th International Fujaba
Days, Kassel, Germany. University of Kassel, Oct. 2007.

[8] J. Johannes, I. Savga, and T. Haupt. Integrating fujaba
and the eclipse modeling framework. In H. Giese and
B. Westfechtel, editors, Proc. of the 4th International
Fujaba Days, Bayreuth, Germany, volume tr-ri-06-275.
University of Paderborn, Sept. 2006.

[9] Object Management Group. MetaObject Facility (MOF)
specification version 2.0. OMG Document, Jan. 2006.
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

[10] Reuseware Project. Reuseware Composition Framework.
http://www.reuseware.org. Accessed Aug. 2008.

[11] The Eclipse Foundation. Eclipse modelling project.
http://www.eclipse.org/modelling. Accessed Aug. 2008.


